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Abstract: - In recent years, Reversible logic has emerged as a major area of research due to its ability to reduce 
the power dissipation which is the main requirement in the l ow power digital circuit design. It has wide 
applications like low power CMOS design, Nano-technology, Digital signal processing, Communication, DNA 
computing and Optical computing. In this paper, we have proposed a new 4x4 r eversible  gate and it is being 
used t o r ealize t he D-latch a nd D -flip-flop i n t he r eversible dom ain. T he t ransistor r epresentation of  t he 
proposed  reversible D-flip-flop is implemented using adiabatic logic. Also a 4-bit reversible SISO, SIPO, PISO 
and P IPO sh ift registers has b een d esigned using t he p roposed r eversible d-flip-flop. P roposed c ircuits have 
been simulated using Modelsim and synthesized using Xilinx Virtex5vlx30tff665-3.  

Key-Words: - Reversible D-Latch, Reversible D-Flip-Flop, Reversible Shift Registers, FPGA. 
 
1 Introduction 
Reduction of the power dissipation remains a s an 
important goal in the VLSI circuit design for many 
years.. C onventionally d igital ci rcuits h ave b een 
implemented using the basic logic gates which were 
irreversible i n n ature. T hese i rreversible g ates 
produce energy loss due to the information bits lost 
during t he op eration. I nformation l oss o ccurs 
because total number of output signals generated is 
less than total num ber o f i nput s ignals a pplied. 
Thus, conventional c ombinational lo gic circuits 
dissipate heat for every bit of information that is lost 
during their operation. In 1961, R.Landauer, proved 
that a  s ingle b it o f information l oss d issipates 
KTlni2 joules of energy where K is the Boltzmann’s 
constant and T  is t he t emperature at which t he 
computation is performed. In 1973, Bennett showed 
that in order to avoid energy loss it is necessary that 
all t he c omputations ha ve t o be pe rformed i n a 
reversible way [2]. Thus to avoid power dissipation, 
circuits m ust b e co nstructed f rom r eversible l ogic 
gates. Thus every future t echnology h as to use 
reversible gates in order to reduce power 
dissipation. Perkowski et .al.’s s tates [ 3] “ every 
future technology w ill h ave t o u se r eversible g ates 
in order to reduce power” This has led many people 
to pursue research in the area of reversible logic.  A 
circuit is said to be reversible if the input vector can 
be uniquely recovered from the output vector and if 
there is a one – to –one correspondence between its 
input a nd out put a ssignment. A  r eversible c ircuit 
maps each input vector, into a unique output vector 

and vice versa. Thus reversible logic has application 
in v arious research a reas su ch as d igital signal 
processing, quantum computing, low power CMOS 
design, c ommunication, bi oinformatics a nd 
nanotechnology-based sy stems [ 4]. A  r eversible 
logic c ircuit s hould be  d esigned us ing m inimum 
number of  r eversible l ogic g ates, w ith m inimum 
number of  g arbage out puts a nd w ith m inimum 
number of  c onstant i nputs [ 5-7]. The o utput w hich 
cannot be  u sed f urther f or c omputation pr ocess i s 
known as garbage output. The input that is added to 
an n xk f unction t o m ake i t r eversible i s c alled 
constant input [8]. The quantum cost of a reversible 
or quantum circuit is defined as the number of 1×1 
or 2× 2 g ates u sed to i mplement t he circuit. The 
major o bjective o f a r eversible logic d esign i s t o 
minimize t he qua ntum c ost a nd t he num ber of  
garbage outputs [9]. Hence, one of the major issues 
in reversible circuit design is  garbage minimization 
to m inimise the pow er d issipation. A nother 
significant criterion in d esigning a  r eversible lo gic 
circuit is to minimize the number of reversible gates 
used [10]. It ha s b een s hown that bo th the 
combinational as well as the sequential circuits can 
be d esigned u sing r eversible l ogic g ates. H owever 
the d esign o f seq uential c ircuits i s m ore co mplex 
than that of a combinational circuit. In this paper we 
are p resenting a n ew 4 x4 r eversible l ogic gate an d 
the realization o f r eversible D -latch an d r eversible 
D-flip-flop us ing t he pr oposed g ate. The t ransistor 
representation of  t he pr oposed c ircuit is be tter i n 
terms of transistor count. The proposed work is then 
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compared w ith t he ex isting r eversible seq uential 
circuits. Also, a 4 -bit reversible Serial in Serial out, 
4-bit R eversible S erial in  P arallel o ut, 4 -bit 
Reversible Parallel in Serial out and a 4-bit 
Reversible Parallel in Parallel out shift registers are 
designed using t he pr oposed D -flip-flop. A ll t he 
proposed circuits h ave b een implemented u sing 
VHDL and simulated using Modelsim. The paper is 
organized a s follows: S ection 2 i s a n ov erview o f 
the reversible gates. Section 3 deals with the survey 
of the existing work. Section 4 represents the design 
of t he p roposed r eversible g ate.  S ection 5  
represents t he transistor i mplementation o f the 
proposed gate using adiabatic logic. Section 6 
describes the proposed design of a D-Latch and a D-
flip-flop. S ection 7 de scribes t he de sign of  a ll t he 
four t ypes of  4 -bit r eversible sh ift r egister. 
Simulation results of  t he proposed de sign are 
presented in section 9 and conclusions are contained 
in section 10. 
 
 
2 Reversible Logic Gates 
Some of  t he i mportant reversible l ogic g ates ar e 
Feynman gate, RR gate, and SG gate. Brief 
introduction of these gates are as shown in Table 1. 

Table 1. Reversible Logic Gates 

SI.No Gate Block 
Diagram 

Function 

1. Feynman 

 

 
 

P  = A 

Q  = A    B 

2. RR 

 

P = B 

Q = B’C+BD 

R = B’C+BD    A 

S = C     D   

3. SG 

 

P =A  

Q = A’B    AC 

R = A’B     AC     D 

R = AB     A’ C    D 

4. Toffoli 

 

P = A 

Q = B 

R = AB    C  

5. Fredkin 

 

P = A 

Q = A’B + AC 

R = AB + A’C 
 
3 Literature Survey 
H.Thapliyal, M .B.Srinivas a nd M ark Zwolinski 
[11]proposed a r eversible D -flip-flop us ing N ew 
gate and Feynman gate. The drawback of this work 
is t hat it r equires m ore n umber o f r eversible g ates 
and pr oduces m ore num ber of  g arage out puts. A s 
the n umber o f r eversible g ates required i s more, i t 
also increases t he qua ntum c ost of  their flip-flop. 
H.Thapliyal a nd M .B.Srinivas [ 12] pr oposed a 
reversible D -latch us ing t wo F redkin g ates. The 
drawback of  t heir w ork i s t he qua ntum c ost t o 
realize a r eversible D-latch with both the outputs Q 
and Q’ is 1 0. However, t o realize a reversible 
master-slave D -flip-flop 5  F redkin g ates ar e u sed 
which i ncreases t he q uantum co st. Rice [1 3] 
proposed a reversible S R l atch an d all t he o ther 
latches w ere d esigned as t he s ub-units f rom 
reversible R S l atch as a p art o f m aster-slave f lip-
flops. T hapliyal a nd V inod [ 14] pr oposed t he 
designs o f r eversible l atches an d f lip f lops. T he 
proposed designs were shown to be better t han t he 
designs p resented i n R ice [ 13] i n t erms o f t he 
number of reversible gates and garbage outputs. The 
quantum cost of the reversible D-latch proposed by 
Thapliyal and V inod is 10. H.Thapliyal a nd N . 
Ranganathan [ 15] proposed a  n egative en abled 
reversible D - Latch us ing F redkin g ate. The 
advantage of this work is that it does not require the 
inversion o f C LK p ulse t o r ealize t he master-slave 
D-flip-flop. To realize both the outputs Q and Q’, it 
requires 1  F redkin g ate a nd 2  F eynman g ates a nd 
the quantum cost of  their implementation is 7. The 
transistor i mplementation is n ot ad dressed i n t his 
work. Md. S elim Al M amun, Indrani Mandal, Md. 
Hasanuzzaman [ 16] p roposed a r eversible D -latch 
using MG-1 gate. In this work the number of XOR 
operations involved i n realizing a  M G-1 g ate i s 
more w hich will in crease the tr ansistor c ount. 
S.Ranjith, T.Ravi and E. L ogashanmugam [17] 
proposed a  r eversible R R g ate us ing w hich a 
reversible D -Flip-flop has be en realized. T he 
drawback o f t heir w ork i s t hat to realize a  m aster 
slave f lip-flop an a dditional r eversible g ate i s 
required t o p roduce t he complement of  t he c lock 
signal and further t o r ealize the flip-flop w ith both 
the outputs Q and Q’ one more reversible gate is in 
need to produce Q’. Thus, the number of reversible 
gates r equired is more which i n addition w ill 
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increase t he t ransistor co unt. P rashant R . Y elekar 
and P rof. S ujata S . C hiwande [ 18] proposed a  
reversible D-Latch and T -flip-flop using SG gate. 
Again in this work to implement a  master-slave D-
flip flop an additional reversible gate is required to 
complement the clock pulse and also the number of 
XOR operations involved in r ealizing a SG gate is 
more which will increase the transistor count. To 
minimize t he t ransistor c ount, w e ha ve pr oposed a  
new reversible gate which is a modified form of the 
reversible R R g ate w hich can  b e u sed f or t he 
realization D -Latch an d D -flip-flop with l ess 
number of transistor count. 
 
 
4   Proposed Work 
 
4.1 Proposed Reversible gate AS 
The l ogic diagram of  t he proposed reversible g ate 
AS i s a s s hown in f igure. T he p roposed r eversible 
gate A S i s a 4 x4 r eversible g ate w ith 
inputs(A,B,C,D) and with outputs A’, AB + A’C, D     
(AB + A’C) and B    C.  
 

 
Fig.1 Proposed 4x4 AS Reversible Gate.  

The truth t able f or t he c orresponding ga te is a s 
shown in Table 2. 

 

 

 

 

Table 2. Truth Table of AS Reversible Gate 

A B C D P Q R S 

0 0 0 0 1 0 0 0 

0 0 0 1 1 0 1 0 

0 0 1 0 1 1 1 1 

0 0 1 1 1 1 0 1 

0 1 0 0 1 0 0 1 

0 1 0 1 1 0 1 1 

0 1 1 0 1 1 1 0 

0 1 1 1 1 1 0 0 

1 0 0 0 0 0 0 0 

1 0 0 1 0 0 1 0 

1 0 1 0 0 1 1 1 

1 0 1 1 0 1 0 1 

1 1 0 0 0 0 0 1 

1 1 0 1 0 0 1 1 

1 1 1 0 0 1 1 0 

1 1 1 1 0 1 0 0 

A cl oser l ook at  t he Truth T able r eveals that t he 
input pa ttern c orresponding t o a  s pecific ou tput 
pattern c an be  un iquely de termined a nd t hereby 
maintaining th at t here is  a o ne-to-one 
correspondence be tween the i nput v ector a nd the 
output vector. In this gate the input vector is given 
by IV=(A,B,C,D) a nd t he c orresponding out put 
vector i s O V=(P,Q,R,S). The q uantum c ost of  the 
proposed reversible gate AS is 6. The quantum cost 
represents the number of 1x1 and 2x2 primitive 
gates u sed i n the r ealization o f t he p roposed 
reversible gate AS. 

4.1.1 Realization of the Classical Operations 
using the Proposed Reversible Gate AS 

The p roposed r eversible gate A S can  i mplement 
OR, AND, XOR,  NOT  and COPY operation. Also 
since A ND, O R a nd N OT ope ration c an be  
implemented j ustifies t he aforesaid because an y 
boolean function can be materialized in product – of 
– sum or sum – of – products form. Also the COPY 
operation i s an i mportant operation w hich c an be  
realized using the proposed reversible gate AS.  
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Fig. 2 Reversible Gate AS implementing reversible 
XOR and COPY operation. 

 

Fig. 3 Reversible Gate AS implementing reversible 
OR, NOT and XOR operation. 

 

Fig. 4 Reversible Gate AS implementing reversible 
AND, NOT and COPY operation. 

 
 
5  Transistor Implementation of the 
Proposed Reversible Gate using 
Adiabatic Method 
Conventional C MOS l ogic ci rcuits o perate a t a  
constant v oltage V dd a nd t he a mount of  e nergy 
dissipated pe r transition due t o pu ll-up a nd pu ll-
down is CVdd2/2.                   -----------   (1) 
Energy is used only once in CMOS logic circuits.   
Whereas adiabatic l ogic ci rcuits are p owered b y a  
power c lock pul se and t he a mount of  e nergy per 
transition over the time period T is i2 (t) R T,----- (2)  
where i(t) – current through the capacitor, C. 
From a n R C c ircuit, t he c urrent through t he 
capacitor can be expressed as i(t) = C dv/dt.  Let the 
input s ignal v(t) makes a  t ransition from logic 0  to 
Vdd over the time T. Thus, i2(t) = C2 Vdd2 / T2 
Thus, the a mount of  e nergy pe r t ransition i s 
RC2Vdd2/T. In CMOS logic circuits, the amount of 
energy dissipated depends only on C and Vdd while 
in a diabatic c ircuits i t d epends on the s ize of  
transistor as well as on the time T. To dissipate less 
energy T > 2RC in adiabatic circuits. Thus, 
adiabatic circuits ar e low power ci rcuits which use 
reversible logic to conserve energy. 
   Adiabatic l ogic families can  b e implemented 
either u sing ef ficient charge r ecovery l ogic 
(ECRL)or b y  positive f eedback ad iabatic 
logic(PFAL). ECRL i mplements the l ogic f unction 
with less n umber o f t ransistors w hen co mpared to 
PFAL t echnique. P FAL t echnique implements t he 
function with l ess power dissipation a t the expense 

of transistor count. In both the techniques, the input 
signal must be phase shifted by 90ₒ with respect to 
the p ower c lock. I n ad iabatic sy stems, m ore t han 
one power clock is required. We have proposed the 
transistor r epresentation o f t he proposed g ate A S 
using ECRL technique. In our work, four phases of 
power clock i s used to achieve the synchronization 
and t he input signal i s phase s hifted by  90ₒ with 
respect to the power clock. 

 

Fig. 5 Transistor Representation of Proposed 
Reversible Gate AS. 

The transistor representation of  proposed reversible 
gate AS is shown in figure 5. When the input a is 0 
and a ’ is 1, the transistor M15 conducts a nd pull 
down t he node  a  to 0. T hus, t he node a  r epresents 
the f unction pba r. S ince node  a  i s 0, t he t ransistor 
M12 conducts and the node abar follows the signal 
clock CLK4 which represents the function p. Thus, 
the transistors M12, M13, M14 and M15 represent 
an inverter. T he t ransistors M3, M 4, M 5 and M 6 
represent t he function a b +  a’c i.e t he f unction q. 
While t he t ransistors M 7, M 8, M 9 and M 10 
represent t he f unction (ab +  a ’c)’ i .e qba r.  The 
transistors M1 8, M 19 a nd M20 r epresent the 
function dqb ar +  d ’q i.e t he f unction s . W hile t he 
transistors M2 1, M2 2 a nd M23 r epresent the 
function dq  +  d’qbar i .e sbar. The transistors M31, 
M32 a nd M33 represent t he f unction bc ’ +  b’ c i .e 
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the function r . While the transistors M34, M35 and 
M36 represent its complement i.e bc + b’c’. Thus, a 
total of 30 transistors are required to implement the 
reversible gate AS. Adiabatic logic introduces more 
number of transistors but it produces both the signal 
and i ts complement. T he average power c onsumed 
by t he c ircuit a t a  frequency of  10M Hz i s 72m W 
with an operating voltage of 2V.  

 

6    Proposed Design of Reversible D-
Latch and Reversible D-Flip-Flop 
 
6.1 Proposed Reversible D-Latch 
To m inimise t he t ransistor co unt, w e h ave 
implemented a r eversible D-Latch using the 
proposed reversible g ate A S. The s ymbolic 
representation o f t he p roposed r eversible D -Latch 
with the un-complemented output is shown in figure 
6. 

 

Fig. 6 Symbolic Representation of Proposed 
Reversible D-Latch with the output Q Using 

Reversible Gate AS. 

From reversible gate AS, when D is 0, A= Clk, B = 
D(Data I nput), and  C  =  Q(Previous O utput)  P  = 
Clk’, R = Q, S = D XOR Q and Q =  ClkD + Clk’Q 
which represents t he Boolean E xpression of  D -
Latch. The output P = Clk’ can be used to realize the 
master-slave D-flip-flop and S = D XOR Q 
represent the g arbage out put. Thus, t he p roposed 
Reversible D -Latch r equires 1  r eversible g ate. The 
circuit accepts1 constant input and produces one 
garbage out put w hich i s a n opt imized c ircuit. The 
number of  transistors required t o i mplement t he 
proposed circuit is 30.  

The s ymbolic r epresentation of the p roposed 
reversible D-Latch with both un-complemented and 
complemented outputs is shown in figure 7. 

 

Fig. 7 Symbolic Representation of Proposed 
Reversible D-Latch with both the outputs Q and Q’ 

Using Reversible Gate AS and Feynman Gate. 

To realize both the outputs Q and Q’, two reversible 
gates ar e required. To p roduce t he co mplemented 
value o f t he s ignal Q , F eynman gate i s u sed.  T he 
circuit accepts two constant inputs and produces one 
garbage output. T he number of transistors r equired 
to realize the proposed reversible gate3 is 30 and to 
realize t he F eynman gate ei ght t ransistors a re 
required. Thus, a total of 38 transistors are required 
to re alize the r eversible D-Latch w ith bo th the 
outputs Q  a nd Q ’. Table 3 shows t he num ber of  
gates required to realize the reversible D-Latch with 
both Q  an d Q ’ u sing R eversible G ate A S an d 
Feynman gate. 
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The r eversible D-latch in  [ 17] is  a  p artially 
reversible d esign that u ses c omplimentary p ass 
transistor logic, which is an acceptable approach  

Table 3.  N umber of  g ates r equired t o realize the 
Reversible D-Latch with both the outputs Q and Q’. 

(although t hey do us e conventional inverters a t 
points). The circuits i n [ 18] u se D eVos p ass 
transistor l ogic (but a re not still c ompletely 
adiabatic). F rom table 3 , it is inferred that th e 
number of  t ransistors required to implement the D-
latch[18] with both the outputs Q and Q’ using non-
adiabatic logic is 2 8. H owever, i f t he sam e i s 
implemented us ing adiabatic logic, the number of 
transistors r equired is 4 4 w hich i s m ore w hen 
compared with our proposed work. 

6.2   Proposed D-Flip-Flop 

The symbolic representation of the master-slave D-
flip-flop with both the outputs Q and Q’ is shown in 
figure 8.  

 

 

Fig. 8 Symbolic Representation of Proposed 
Reversible D-Flip-Flop with both the outputs Q and 
Q’ Using Reversible Gate AS and Feynman Gate. 

Thus two reversible Gates AS are required to realize 
the master-slave D-flip-Flop.  O ne Feynman gate is 
used to produce the true and the complement value 
of t he signal Q . The c ircuit ope ration i s s traight 
forward. T he f irst reversible gate AS functions as 
master. The second reversible gate AS functions as 
slave. M aster is activated when t he c lock m akes a 
transition from low to high and slave gets activated 
when t he clock g oes f rom hi gh t o low. When t he 
Clock pul se m akes a  t ransition f rom l ow t o hi gh, 
master passes the D value to the signal Q on the first 
gate AS. The output produced by the master is given 
as t he d ata i nput t o t he s lave.  S ince the slave i s 
triggered by the signal clk’, when clock goes from 0 
to 1, t he slave retains the previous value. When the 
clock m akes a t ransition f rom h igh t o l ow, master 
retains the previous value while the slave passes the 
data passed by the m aster to t he s ignal Q on the 
signal Q  o f t he s econd r eversible g ate A S.  O ne 
input f or t he F eynman gate i s Q  a nd t he s econd 
input i s 1. Thus it produces a  copy of  the s ignal Q 
and i ts c omplement Q ’. T he ou tput P  f rom t he 
second reversible gate AS can be used to realize the 
shift r egister. However, the output S  f rom both the 
reversible gates AS is unused and hence the number 
of g arbage o utputs i s 2 . The ci rcuit ac cepts t hree 
constant inputs. The symbolic representation of the 
reversible D-Flip-Flop is as shown in figure 9. 

 

Fig. 9 Symbolic Representation of Proposed 
Reversible D-Flip-Flop with both the outputs Q and 
Q’ Using Reversible Gate AS and Feynman Gate. 

SI.No Number 
of G ates 
Required 

Quantum 
Cost 

Number of  
Transistors 
Required 

Number 
of 
garbage 
outputs 
produced 

1.Existing 
Work[12] 

2 10 Not given 1 

2.Existing 
Work[14] 

2 10 Not given  2 

3.Existing 
Work[15] 

2 7 Not given  2 

5..Existing 
Work[16] 

1 10 Not given  1 

6..Existing 
Work[17] 

2 Not 
given 

30 ( uses 
convention
al C MOS 
inverters) 

 1 

7..Existing 
Work[18] 

2 Not 
given 

28 ( using 
non- 
adiabatic) 

 1 

8. Proposed 
Work 

2 6 38 ( using 
adiabatic 
logic) 

 2 
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Table 4 shows t he num ber of  g ates r equired t o 
implement the proposed Reversible D-Flip-Flop. 

Table 4.  Number of gates required to implement the 
proposed Reversible D-Flip-Flop. 

From t able 4, it i s i nferred w ith r espect to the 
existing work[18] the number of transistors required 
to r ealize t he r eversible D -Flip-flop us ing S ayem 
Gate is 80 i .e., us ing adiabatic logic which is more 
when c ompared w ith the pr oposed r eversible D -
Flip-Flop us ing m odified RR g ate. H owever, the 
number of  g arbage out puts pr oduced r emains t he 
same in both the existing and the proposed work.  
 
7   Realization of Shift Registers 
A shift register is  a  cascade of flipflop, sharing the 
same clock, in which the output of each flip-flop is 
connected to the "data" input of the next flip-flop in 
the chain, resulting i n a circuit that shifts by one  
position t he " bit a rray" s tored i n i t, shifting in  the 
data present at its input and shifting out  the last bit 
in t he a rray, a t e ach t ransition of  t he c lock i nput. 
More g enerally, S hift registers can  h ave b oth 
parallel and serial inputs and outputs. These are 
often configured as serial-in, parallel-out (SIPO) or  
as parallel-in, serial-out (PISO). There are also types 
that ha ve bo th s erial and parallel input a nd t ypes 
with serial and parallel output. 

7.1 Realization of Serial In Serial Out Shift 
Register 
The s erial in /serial o ut s hift r egister  a ccepts d ata 
serially – that is, one bit at a time on a single line. It 
produces the stored information on its output also in 
serial f orm. T he i nput d ata is then ap plied 
sequentially to the D input of the first f lip-flop on  
the l eft .D uring e ach c lock pul se, on e bi t i s 
transmitted from left to r ight. A basic four-bit shift 

register can be co nstructed u sing f our D  f lip-flops. 
The operation of the circuit is as follows. The input 
data i s then a pplied sequentially t o the D  input o f 
the first f lip-flop on t he l eft . D uring e ach c lock 
pulse, one bit is transmitted from left to right.  
    A 4 -Bit R eversible S erial in S erial o ut S hift 
Register is realized using the proposed D-Flip-Flop. 
Thus, 4 R eversible D -Flip-Flops ar e co nnected i n 
cascade i n s eries t o implement t he 4 -bit r eversible 
shift register as shown in figure 10. 

 

 Fig. 10 Symbolic Representation of Proposed 
Reversible4-Bit Serial In Serial Out Shift Register. 

Table 5 shows t he n umber o f reversible g ates 
required t o implement t he r eversible 4 -bit serial in  
serial out shift register. 

Table 5.  Number of gates required to implement a 
4-bit Reversible Serial in Serial out Shift Register. 

SI.No Number of 
Gates 
Required 

Number of  
garbage out puts 
produced 

1.Proposed 
Work 

12 8 

 

7.2 Realization of Serial In Parallel Out Shift 
Register 
In t his t ype o f shift r egister, d ata b its a re en tered 
serially that is, one bit at a time on a single line. It 
produces the stored information on its output in 
parallel form. T he input da ta i s t hen applied 
sequentially to the D input of the first f lip-flop on  
the l eft .D uring e ach c lock pul se, one bi t i s 
transmitted f rom le ft to  r ight. O nce th e d ata a re 
stored, each bit appears on its respective output line, 
and al l b its a re av ailable s imultaneously. A  
construction of  a  f our-bit s erial in  - parallel out  
register is shown in figure 11. 

SI.No Number 
of G ates 
Required 

Number o f 
Transistors 
Required 

Number 
of 
garbage 
outputs 
produced 

1.Existing 
Work[18] 

4 48(using 
non-
adiabatic 
logic) 

2 

2.Proposed 
Work 

3 68 ( using 
adiabatic 
logic) 

2 
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 Fig. 11 Symbolic Representation of Proposed 
Reversible4-Bit Serial In Parallel Out Shift Register. 
Table 6 shows t he n umber o f reversible g ates 
required to implement the reversible 4 -bit Serial in 
Parallel out shift register. 

Table 6.  Number of gates required to implement a 
4-bit Reversible Serial in Parallel out Shift Register. 

SI.No Number of 
Gates 
Required 

Number of  
garbage out puts 
produced 

1.Proposed 
Work 

12 8 

 

7.3 Realization of Parallel In Parallel Out Shift 
Register 
For parallel in - parallel out shift registers, al l data 
bits a ppear on t he pa rallel outputs i mmediately 
following t he s imultaneous e ntry of  the d ata bi ts. 
Figure 12 s hows t he 4 -bit R eversible Parallel I n 
Parallel Out Shift Register. 

 

Fig. 12 Symbolic Representation of Proposed 
Reversible4-Bit Parallel In Parallel Out Shift 

Register. 

Table 7 shows t he n umber o f reversible g ates 
required to implement the reversible 4-bit Parallel in 
Parallel out shift register. 

 

Table 7.  Number of gates required to implement a 
4-bit Reversible Parallel in Parallel out Shift 

Register. 

SI.No Number of  
Gates 
Required 

Number of  g arbage 
outputs produced 

1.Proposed 
Work 

12 8 

 

7.4 Realization of Parallel In Serial Out Shift 
Register 

Figure 13 shows the realization of the reversible 4 – 
bit Parallel in Serial Out Shift Register. To write the 
new data to the register, W/S line must be held high. 
To shift the da ta, W/S line should be low. F redkin 
gate i s used as the multiplexer to select whether to 
shift the data or to load a new data. 

 

Fig. 13 Symbolic Representation of Proposed 
Reversible4-Bit Parallel In Serial Out Shift Register. 

Table 8 shows t he n umber o f reversible g ates 
required to implement the reversible 4-bit Parallel in 
Serial out shift register. 

Table 8.  Number of gates required to implement a 
4-bit Reversible Parallel in Serial out Shift Register. 

SI.No Number of 
Gates 
Required 

Number of  
garbage out puts 
produced 

1.Proposed 
Work 

15 11 
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9  Simulation Results 
The en tire u nit w as f unctionally v erified. A  t est-
bench is used to generate the stimulus and applies it 
to t he implemented r eversible d -flip-flop, S erial in  
Serial out Shift Register, Serial in Parallel Out Shift 
Register, P arallel i n S erial O ut S hift R egister an d 
Parallel in P arallel o ut S hift R egister. The d esign 
was si mulated u sing Mo delsim an d sy nthesized 
using X ilinx V irtex5 a nd t he pow er is e stimated 
using Xilinx Power Estimator tool. 

 

Fig. 14 Simulation Result of the Proposed D-Flip-
Flop Using Reversible Gate AS. 

In figure 14, c lk, d  represents the input signals and 
q, qba r represents the o utput signals. F rom the 
figure whenever clk makes a transition from logic 1 
to logic 0, whatever is the d value that is reflected in 
the output signal q.  

 

Fig. 15 Simulation Result of the Proposed 
Reversible 4-Bit Serial In Serial Out Shift Register. 

Figure 15 s hows t he s imulation r esult of  the 
Reversible 4 -bit S erial in  Serial out S hift R egister 
where c lk, d r epresents t he input a nd q, qbar 
represents t he out put.  From the figure, t he f irst 
input i s available on the output s ignal q during the 
fourth clk transition from logic1 to logic 0. 

 

Fig. 16 Simulation Result of the Proposed 
Reversible 4-Bit Serial In Parallel Out Shift 

Register. 

Figure 16 s hows t he s imulation r esult of  the 
Reversible 4-bit Serial in Parallel out Shift Register 
where c lk, d  r epresents the i nput and q, qba r 
represents t he out put.  From the figure, t he f irst 
input i s available on the output s ignal q during the 
first clk t ransition from logic1 to logic 0. The 4-bit 
input 0101 is a vailable on t he o utput du ring t he 
fourth clk transition from logic 1 to logic 0. 

 

Fig. 17 Simulation Result of the Proposed 
Reversible 4-Bit Parallel In Parallel Out Shift 

Register. 

Figure 17 s hows t he s imulation r esult of  the 
Reversible 4 -bit P arallel in  P arallel o ut S hift 
Register where cl k, d represents t he i nput a nd q,  
qbar represents the output.  F rom the f igure, the 4-
bit input 1010 is available on the output during the 
first clk transition from logic 1 to logic 0. 

 

Fig. 18 Simulation Result of the Proposed 
Reversible 4-Bit Parallel In Serial Out Shift 

Register. 

Figure 18 s hows t he s imulation r esult of  the 
Reversible 4-bit Parallel in Serial out Shift Register 
where c lk, d r epresents t he input a nd q, qbar 
represents the output.  From the figure, for the 4-bit 
input 1010 the f irst bit is available o n the o utput 
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signal during t he f ourth clk t ransition f rom l ogic 1  
to l ogic 0. I n t he r ealization of  the p roposed s hift 
register, the previous bit is loaded as the input to the 
next f lip-flop a nd h ence th e f irst b it is s hifted 
serially.  
 
10  Conclusion 
In t his p aper an  o ptimized r eversible d -latch and a 
d-flip-flop i s pr esented with t he pr oposed ne w 
Reversible G ate AS with lesser n umber of 
transistors. T he proposed D -flip-flop c an g enerate 
both t he outputs Q and Q’. T hen a  4 -bit r eversible 
serial in serial out, serial in parallel out, parallel in 
serial out and parallel in parallel out shift register is 
designed us ing t he pr oposed r eversible d -flip-flop. 
The design i s very us eful for the future computing 
techniques like ultra low power digital c ircuits and 
quantum c omputers. The pr oposed d -flip-flop is 
highly optimized in terms of number of transistors. 
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