Design of 4-Bit Reversible Shift Registers

A.V.ANANTHALAKSHMI, G.F.SUDHA
Department of Electronics and Communication Engineering
Pondicherry Engineering College
Puducherry
INDIA
anantha_av@pec.edu http://www.pec.edu

Abstract

In recent years, Reversible logic has emerged as a major area of research due to its ability to reduce the power dissipation which is the main requirement in the low power digital circuit design. It has wide applications like low power CMOS design, Nano-technology, Digital signal processing, Communication, DNA computing and Optical computing. In this paper, we have proposed a new 4×4 reversible g ate and it is being used tor ealize t he D-latch a nd D-flip-flop in t he r eversible dom ain. The t ransistor r epresentation of t he proposed reversible D-flip-flop is implemented using adiabatic logic. Also a 4 -bit reversible SISO, SIPO, PISO and PIPO shift registers has been designed using the proposed reversible d-flip-flop. Proposed circuits have been simulated using Modelsim and synthesized using Xilinx Virtex5vlx30tff665-3.

Key-Words: - Reversible D-Latch, Reversible D-Flip-Flop, Reversible Shift Registers, FPGA.

1 Introduction

Reduction of the power dissipation remains as an important goal in the VLSI circuit design for many years.. C onventionally d igital ci rcuits h ave b een implemented using the basic logic gates which were irreversible i n n ature. T hese i rreversible g ates produce energy loss due to the information bits lost during t he op eration. I nformation 1 oss o ccurs because total number of output signals generated is less than total num ber of i nputs ignals a pplied. Thus, conventional c ombinational lo gic circuits dissipate heat for every bit of information that is lost during their operation. In 1961, R.Landauer, proved that a s ingle b it of information 1 oss d issipates KTlni2 joules of energy where K is the Boltzmann's constant and T is the t emperature at which t he computation is performed. In 1973, Bennett showed that in order to avoid energy loss it is necessary that all t he computations ha ve $t o$ be pe rformed in a reversible way [2]. Thus to avoid power dissipation, circuits m ust be co nstructed from r eversible 1 ogic gates. Thus every future t echnology h as to use reversible gates in order to reduce power dissipation. Perkowski et .al.'s s tates [3] " every future technology will have to use reversible gates in order to reduce power" This has led many people to pursue research in the area of reversible logic. A circuit is said to be reversible if the input vector can be uniquely recovered from the output vector and if there is a one - to -one correspondence between its input a nd out put a ssignment. A reversible circuit maps each input vector, into a unique output vector
and vice versa. Thus reversible logic has application in v arious research a reas su ch as igital signal processing, quantum computing, low power CMOS design, c ommunication, bi oinformatics a nd nanotechnology-based sy stems [4]. A r eversible logic c ircuit s hould be d esigned us ing m inimum number of r eversible 1 ogic g ates, w ith m inimum number of g arbage out puts a nd w ith m inimum number of constant inputs [5-7]. The output which cannot be used further for computation process is known as garbage output. The input that is added to an $n \mathrm{xk}$ f unction t o m ake itr eversible iscalled constant input [8]. The quantum cost of a reversible or quantum circuit is defined as the number of 1×1 or $2 \times 2 \mathrm{~g}$ ates u sed to i mplement the circuit. The major o bjective of ar eversible logic design is to minimize t he qua ntum c ost a nd t he num ber of garbage outputs [9]. Hence, one of the major issues in reversible circuit design is garbage minimization to m inimise the pow erd issipation. A nother significant criterion in designing a reversible lo gic circuit is to minimize the number of reversible gates used [10]. It ha s b een s hown that bo th the combinational as well as the sequential circuits can be d esigned u sing reversible logic g ates. H owever the design of seq uential circuits is m ore co mplex than that of a combinational circuit. In this paper we are presenting a n ew 4×4 reversible logic gate and the realization of r eversible D-latch an $d r$ eversible D-flip-flop us ing the pr oposed gate. The transistor representation of t he pr oposed c ircuit is be tter in terms of transistor count. The proposed work is then
compared w ith t he ex isting r eversible seq uential circuits. Also, a 4-bit reversible Serial in Serial out, 4-bit R eversible S erial in P arallel o ut, 4 -bit Reversible Parallel in Serial out and a 4-bit Reversible Parallel in Parallel out shift registers are designed using the pr oposed D-flip-flop. A 11 t he proposed circuits h ave b een implemented u sing VHDL and simulated using Modelsim. The paper is organized as follows: Section 2 i s an ov erview of the reversible gates. Section 3 deals with the survey of the existing work. Section 4 represents the design of t he p roposed r eversible g ate. S ection 5 represents t he transistori mplementation of the proposed gate using adiabatic logic. Section 6 describes the proposed design of a D-Latch and a D-flip-flop. S ection 7 de scribes t he de sign of a ll t he four t ypes of 4 -bit r eversible sh ift r egister. Simulation results of t he proposed de sign are presented in section 9 and conclusions are contained in section 10 .

2 Reversible Logic Gates

Some of t he i mportant reversible 1 ogic g ates ar e Feynman gate, RR gate, and SG gate. Brief introduction of these gates are as shown in Table 1.

Table 1. Reversible Logic Gates

5. Fredkin | $\frac{A}{C}$ |
| :--- | :--- | :--- | :--- |

3 Literature Survey

H.Thapliyal, M .B.Srinivas a nd M ark Zwolinski [11]proposed a r eversible D -flip-flop us ing N ew gate and Feynman gate. The drawback of this work is that it requires more number of reversible g ates and pr oduces m ore num ber of g arage out puts. A s the n umber of reversible g ates required is m ore, it also increases t he qua ntum cost of their flip-flop. H.Thapliyal a nd M .B.Srinivas [12] pr oposed a reversible D -latch us ing t wo F redkin g ates. The drawback of t heir w ork is t he qua ntum c ost $t o$ realize a reversible D-latch with both the outputs Q and Q^{\prime} is 10 . However, t o realize a reversible master-slave D-flip-flop 5 F redkin g ates ar e u sed which i ncreases t he q uantum co st. Rice $\left[\begin{array}{ll}1 & 3\end{array}\right]$ proposed a reversible S R 1 atch an d all t he o ther latches w ere d esigned as t he s ub-units f rom reversible RS 1 atch as a p art of m aster-slave flipflops. T hapliyal a nd V inod [14] pr oposed t he designs of r eversible 1 atches an $\mathrm{d} f$ lip f lops. T he proposed designs were shown to be better than the designs p resented in R ice [13] int erms oft he number of reversible gates and garbage outputs. The quantum cost of the reversible D -latch proposed by Thapliyal and V inod is 10 . H.Thapliyal a nd N . Ranganathan [15] proposed a n egative en abled reversible D - Latch us ing F redkin g ate. The advantage of this work is that it does not require the inversion of CLK pulse to r ealize the master-slave D-flip-flop. To realize both the outputs Q and Q^{\prime}, it requires 1 F redkin g ate a nd 2 F eynman g ates and the quantum cost of their implementation is 7 . The transistor implementation is n ot ad dressed inthis work. Md. S elim A1 Mamun, Indrani Mandal, Md. Hasanuzzaman [16] p roposed a r eversible D -latch using MG-1 gate. In this work the number of XOR operations involved in realizing a $\mathrm{M} \mathrm{G-1} \mathrm{~g}$ ate is more w hich will in crease the tr ansistor c ount. S.Ranjith, T.Ravi and E. L ogashanmugam [17] proposed a r eversible R R g ate us ing w hich a reversible D -Flip-flop has be en realized. T he drawback of t heir w ork is t hat to realize a master slave f lip-flop an a dditional r eversible g ate i s required t o p roduce t he complement of t he c lock signal and further to realize the flip-flop with both the outputs Q and Q ' one more reversible gate is in need to produce Q'. Thus, the number of reversible gates r equired is more which $i n$ addition w ill
increase t he t ransistor co unt. P rashant R . Y elekar and P rof. S ujata S. C hiwande [18] proposed a reversible D-Latch and T-flip-flop using SG gate. Again in this work to implement a master-slave Dflip flop an additional reversible gate is required to complement the clock pulse and also the number of XOR operations involved in realizing a SG gate is more which will increase the transistor count. To minimize the transistor c ount, we ha ve pr oposed a new reversible gate which is a modified form of the reversible R R g ate w hich can b e u sed f or t he realization D -Latch an dD -flip-flop with 1 ess number of transistor count.

4 Proposed Work

4.1 Proposed Reversible gate AS

The logic diagram of the proposed reversible g ate AS is as shown in figure. The proposed reversible gate A Sis sa4 4 r eversible g ate w ith inputs (A, B, C, D) and with outputs $A^{\prime}, A B+A^{\prime} C, D^{\oplus}$ $\left(A B+A^{\prime} C\right)$ and $B \oplus C$.

Fig. 1 Proposed 4×4 AS Reversible Gate.
The truth t able f or t he c orresponding ga te is a s shown in Table 2.

Table 2. Truth Table of AS Reversible Gate

\mathbf{A}	\mathbf{B}	\mathbf{C}	\mathbf{D}	\mathbf{P}	\mathbf{Q}	\mathbf{R}	\mathbf{S}
0	0	0	0	1	0	0	0
0	0	0	1	1	0	1	0
0	0	1	0	1	1	1	1
0	0	1	1	1	1	0	1

0	1	0	0	1	0	0	1
0	1	0	1	1	0	1	1
0	1	1	0	1	1	1	0
0	1	1	1	1	1	0	0
1	0	0	0	0	0	0	0
1	0	0	1	0	0	1	0
1	0	1	0	0	1	1	1
1	0	1	1	0	1	0	1
1	1	0	0	0	0	0	1
1	1	0	1	0	0	1	1
1	1	1	0	0	1	1	0
1	1	1	1	0	1	0	0

A cl oser look at t he Truth T able r eveals that t he input pa ttern c orresponding t o a s pecific ou tput pattern c an be un iquely de termined a nd t hereby maintaining th at t here is a o ne-to-one correspondence be tween the i nput v ector a nd the output vector. In this gate the input vector is given by $\mathrm{IV}=(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D})$ a nd t he c orresponding out put vector is $\mathrm{O} V=(\mathrm{P}, \mathrm{Q}, \mathrm{R}, \mathrm{S})$. The quantum cost of the proposed reversible gate AS is 6 . The quantum cost represents the number of 1 x 1 and 2 x 2 primitive gates u sed $i n$ the r ealization $o f t$ he p roposed reversible gate AS.

4.1.1 Realization of the Classical Operations using the Proposed Reversible Gate AS

The p roposed r eversible gate A S can i mplement OR, AND, XOR, NOT and COPY operation. Also since $A \mathrm{ND}, \mathrm{O} \mathrm{R}$ a nd N OT ope ration c an be implemented j ustifies t he aforesaid because an y boolean function can be materialized in product - of - sum or sum - of - products form. Also the COPY operation is an i mportant operation which c an be realized using the proposed reversible gate AS.

Fig. 2 Reversible Gate AS implementing reversible XOR and COPY operation.

Fig. 3 Reversible Gate AS implementing reversible OR, NOT and XOR operation.

Fig. 4 Reversible Gate AS implementing reversible AND, NOT and COPY operation.

5 Transistor Implementation of the Proposed Reversible Gate using Adiabatic Method

Conventional C MOS 1 ogic ci rcuits o perate a ta constant v oltage V dd a nd t he a mount of e nergy dissipated pe r transition due t o pu ll-up a nd pu lldown is $\mathrm{CVdd}^{2} / 2$.
Energy is used only once in CMOS logic circuits. Whereas adiabatic logic circuits are powered by a power c lock pul se and the a mount of e nergy per transition over the time period T is $i^{2}(t) R T,----(2)$ where $\mathrm{i}(\mathrm{t})$ - current through the capacitor, C .
From a n R C c ircuit, t he c urrent through t he capacitor can be expressed as $\mathrm{i}(\mathrm{t})=\mathrm{C} \mathrm{dv} / \mathrm{dt}$. Let the input signal $v(t)$ makes a transition from logic 0 to Vdd over the time T. Thus, $\mathrm{i}^{2}(\mathrm{t})=\mathrm{C}^{2} \operatorname{Vdd}^{2} / \mathrm{T}^{2}$
Thus, the a mount of e nergy pe $r t$ ransition $i s$ $\mathrm{RC}^{2} \mathrm{Vdd}^{2} / \mathrm{T}$. In CMOS logic circuits, the a mount of energy dissipated depends only on C and Vdd while in a diabatic c ircuits itd epends on the s ize of transistor as well as on the time T. To dissipate less energy $\mathrm{T}>2 \mathrm{RC}$ in adiabatic circuits. Thus, adiabatic circuits are low power circuits which use reversible logic to conserve energy.

Adiabatic logic families can be implemented either u sing ef ficient charge r ecovery 1 ogic (ECRL) or b y positive f eedback ad iabatic logic(PFAL). ECRL i mplements the logic function with less number of t ransistors w hen co mpared to PFAL t echnique. P FAL t echnique implements t he function with less power dissipation at the expense
of transistor count. In both the techniques, the input signal must be phase shifted by 90 with respect to the p ower c lock. I n ad iabatic sy stems, m ore t han one power clock is required. We have proposed the transistor r epresentation oft he proposed g ate A S using ECRL technique. In our work, four phases of power clock is used to achieve the synchronization and the input signal is phase s hifted by 90 with respect to the power clock.

Fig. 5 Transistor Representation of Proposed Reversible Gate AS.

The transistor representation of proposed reversible gate AS is shown in figure 5 . When the input a is 0 and a' is 1 , the transistor M15 conducts a nd pull down the node a to 0 . T hus, the node a represents the function pbar. Since node a is 0 , t he transistor M12 conducts and the node abar follows the signal clock CLK4 which represents the function p. Thus, the transistors M12, M13, M 14 and M15 represent an inverter. The transistors M3, M 4, M 5 and M 6 represent t he function $a b+a$ 'c i.e the function q. While t he t ransistors M $7, \mathrm{M} 8, \mathrm{M} 9$ and M 10 represent t he function $(a b+a$ 'c)' i .e qbar. The transistors M1 8, M 19 a nd M20 r epresent the function dqb ar $+d$ 'q i.e the function s. W hile the transistors M2 1, M2 2 a nd M23 r epresent the function dq + d'qbar i.e sbar. The transistors M31, M32 and M33 represent the function $b c^{\prime}+b^{\prime} c$ i.e
the function r . While the transistors M34, M35 and M36 represent its complement i.e bc + b'c'. Thus, a total of 30 transistors are required to implement the reversible gate AS. Adiabatic logic introduces more number of transistors but it produces both the signal and its complement. The average power consumed by the circuit at a frequency of 10 MHz is 72 mW with an operating voltage of 2 V .

6 Proposed Design of Reversible DLatch and Reversible D-Flip-Flop

6.1 Proposed Reversible D-Latch

Tom inimise t he t ransistor co unt, w eh ave implemented ar eversible D-Latch using the proposed reversibleg ate A S. The s ymbolic representation of t he p roposed r eversible D-Latch with the un-complemented output is shown in figure 6.

Fig. 6 Symbolic Representation of Proposed Reversible D-Latch with the output Q Using Reversible Gate AS.

From reversible gate AS , when D is $0, \mathrm{~A}=\mathrm{Clk}, \mathrm{B}=$ D (Data Input), and $\mathrm{C}=\mathrm{Q}$ (Previous Output) $\mathrm{P}=$ $\mathrm{Clk}^{\prime}, \mathrm{R}=\mathrm{Q}, \mathrm{S}=\mathrm{D}$ XOR Q and $\mathrm{Q}=\mathrm{ClkD}+\mathrm{Clk}^{\prime} \mathrm{Q}$ which represents t he Boolean E xpression of D Latch. The output $\mathrm{P}=\mathrm{Clk}^{\prime}$ can be used to realize the master-slave D-flip-flop and $\mathrm{S}=\mathrm{D}$ XOR Q represent the g arbage out put. Thus, t he p roposed Reversible D-Latch requires 1 reversible gate. The circuit accepts 1 constant input and produces one garbage out put which is a n opt imized c ircuit. The number of transistors required toimplement the proposed circuit is 30 .

The s ymbolic r epresentation of the p roposed reversible D-Latch with both un-complemented and complemented outputs is shown in figure 7.

Fig. 7 Symbolic Representation of Proposed Reversible D-Latch with both the outputs Q and Q' Using Reversible Gate AS and Feynman Gate.

To realize both the outputs Q and Q ', two reversible gates ar e required. To p roduce the co mplemented value of the signal Q, F eynman gate is u sed. T he circuit accepts two constant inputs and produces one garbage output. The number of transistors required to realize the proposed reversible gate3 is 30 and to realize t he F eynman gate ei ght t ransistors a re required. Thus, a total of 38 transistors are required to re alize the r eversible D-Latch w ith bo th the outputs Q a nd Q '. Table 3 shows the num ber of gates required to realize the reversible D-Latch with both Q an $d Q^{\prime} u$ sing R eversible G ate $A S$ an d Feynman gate.

The r eversible D-latch in [17] is a p artially reversible d esign that u ses c omplimentary p ass transistor logic, which is an acceptable approach

SI.No $\begin{aligned} & \text { Number } \\ & \text { of G ates } \\ & \text { Required }\end{aligned}$		Quantum Cost	Number of Transistors Required	Number of garbage outputs produced
1.Existing Work[12]	2	10	Not given	1
2.Existing Work[14]	2	10	Not given	2
3.Existing Work[15]	2	7	Not given	2
5..Existing Work[16]	1	10	Not given	1
6..Existing Work[17]	2	Not given	30 (uses convention al C MOS inverters)	1
7..Existing Work[18]	2	Not given	28 (using nonadiabatic)	1
8. Proposed Work	2	6	38 (using adiabatic logic)	2

Table 3. N umber of g ates r equired to realize the Reversible D-Latch with both the outputs Q and Q'.
(although t hey do us e conventional inverters a t points). The circuits in [18] u se D eVos p ass transistor l ogic (but a re not still c ompletely adiabatic). F rom table 3 , it is inferred that the number of transistors required to implement the D latch[18] with both the outputs Q and Q ' using nonadiabatic logic is 28 . H owever, ift he sam eis implemented us ing adiabatic logic, the number of transistors r equired is 44 w hich i s m ore w hen compared with our proposed work.

6.2 Proposed D-Flip-Flop

The symbolic representation of the master-slave D-flip-flop with both the outputs Q and Q^{\prime} is shown in figure 8.

Fig. 8 Symbolic Representation of Proposed Reversible D-Flip-Flop with both the outputs Q and Q' Using Reversible Gate AS and Feynman Gate.

Thus two reversible Gates AS are required to realize the master-slave D-flip-Flop. O ne Feynman gate is used to produce the true and the complement value of t he signal Q. The c ircuit ope ration is straight forward. The first reversible gate AS functions as master. The second reversible gate AS functions as slave. Master is activated when the c lock makes a transition from low to high and slave gets activated when the clock g oes from high to low. When the Clock pul se m akes a t ransition from 1 ow to high, master passes the D value to the signal Q on the first gate AS. The output produced by the master is given as the data i nput to the s lave. S ince the slave is triggered by the signal clk', when clock goes from 0 to 1 , the slave retains the previous value. When the clock makes a t ransition from high to low, master retains the previous value while the slave passes the data passed by the m aster to the s ignal Q on the signal Q oft he s econd r eversible g ate A S. O ne input f or t he F eynman gate is Q a nd t he s econd input is 1 . Thus it produces a copy of the signal Q and its c omplement Q^{\prime}. T he ou tput P from t he second reversible gate AS can be used to realize the shift register. However, the out put S from both the reversible gates AS is unused and hence the number of g arbage o utputs is 2 . The ci rcuit ac cepts t hree constant inputs. The symbolic representation of the reversible D-Flip-Flop is as shown in figure 9.

Fig. 9 Symbolic Representation of Proposed Reversible D-Flip-Flop with both the outputs Q and Q' Using Reversible Gate AS and Feynman Gate.

Table 4 shows t he num ber of g ates r equired $t o$ implement the proposed Reversible D-Flip-Flop.

Table 4. Number of gates required to implement the proposed Reversible D-Flip-Flop.

SI.No	Number of G ates Required	Number of Transistors Required	Number of garbage outputs produced
1.Existing Work[18]	4	$48($ using non- adiabatic logic)	2
2.Proposed	3	$68($ using Work	2

From t able 4, it i s i nferred w ith r espect to the existing work[18] the number of transistors required to r ealize t he r eversible D-Flip-flop us ing S ayem Gate is 80 i .e., us ing adiabatic logic which is more when c ompared w ith the pr oposed r eversible D -Flip-Flop us ing m odified RR g ate. H owever, the number of g arbage out puts pr oduced r emains t he same in both the existing and the proposed work.

7 Realization of Shift Registers

A shift register is a cascade of flipflop, sharing the same clock, in which the output of each flip-flop is connected to the "data" input of the next flip-flop in the chain, resulting in a circuit that shifts by one position the " bit a rray" s tored in it, shifting in the data present at its input and shifting out the last bit in t he a rray, a $t e$ ach t ransition of t he c lock i nput. More g enerally, S hift registers can h ave b oth parallel and serial inputs and outputs. These are often configured as serial-in, parallel-out (SIPO) or as parallel-in, serial-out (PISO). There are also types that ha ve bo th s erial and parallel input a nd types with serial and parallel output.

7.1 Realization of Serial In Serial Out Shift Register

The s erial in/serial out shift r egister a ccepts d ata serially - that is, one bit at a time on a single line. It produces the stored information on its output also in serial f orm. T he i nputd ata is then ap plied sequentially to the D in put of the first flip-flop on the 1 eft.D uring e ach c lock pul se, on e bi ti s transmitted from left to right. A basic four-bit shift
register can be constructed using four D flip-flops. The operation of the circuit is as follows. The input data is then a pplied sequentially to the D input of the first flip-flop on t he 1 eft. D uring e ach clock pulse, one bit is transmitted from left to right.

A 4 -Bit R eversible S erial in S erial o ut S hift Register is realized using the proposed D-Flip-Flop. Thus, 4 R eversible D-Flip-Flops ar e co nnected in cascade in s eries to implement the 4 -bit reversible shift register as shown in figure 10.

Fig. 10 Symbolic Representation of Proposed Reversible4-Bit Serial In Serial Out Shift Register. Table 5 shows t he n umber of reversible g ates required to implement the reversible 4 -bit serial in serial out shift register.

Table 5. Number of gates required to implement a 4-bit Reversible Serial in Serial out Shift Register.

| SI.No | Number
 Gates
 Required | of
 Number of
 garbage out puts
 produced |
| :--- | :--- | :--- | :--- |
| 1.Proposed
 Work | 12 | 8 |

7.2 Realization of Serial In Parallel Out Shift Register

In t his t ype of shift r egister, d ata b its a re en tered serially that is, one bit at a time on a single line. It produces the stored information on its output in parallel form. T he input da ta i st hen applied sequentially to the D in put of the first flip-flop on the 1 eft. D uringe ach c lock pul se, one bi ti s transmitted from le ft to r ight. O nce the d ata a re stored, each bit appears on its respective output line, and al lb its a re av ailable s imultaneously. A construction of a four-bit s erial in - parallel out register is shown in figure 11.

Fig. 11 Symbolic Representation of Proposed Reversible4-Bit Serial In Parallel Out Shift Register. Table 6 shows t he n umber of reversible g ates required to implement the reversible 4-bit Serial in Parallel out shift register.

Table 6. Number of gates required to implement a 4-bit Reversible Serial in Parallel out Shift Register.

SI.No	Number Gates Required	ofNumber of garbage out puts produced
1.Proposed Work	12	8

7.3 Realization of Parallel In Parallel Out Shift Register

For parallel in - parallel out shift registers, all data bits a ppear on t he pa rallel outputs i mmediately following t he s imultaneous e ntry of the d ata bits. Figure 12 s hows t he 4 -bit R eversible Parallel In Parallel Out Shift Register.

Fig. 12 Symbolic Representation of Proposed Reversible4-Bit Parallel In Parallel Out Shift Register.

Table 7 shows t he n umber of reversible g ates required to implement the reversible 4-bit Parallel in Parallel out shift register.

Table 7. Number of gates required to implement a 4-bit Reversible Parallel in Parallel out Shift Register.

SI.No	Number of Gates Required	Number of g arbage outputs produced
1.Proposed Work	12	8

7.4 Realization of Parallel In Serial Out Shift Register

Figure 13 shows the realization of the reversible 4 bit Parallel in Serial Out Shift Register. To write the new data to the register, W/S line must be held high. To shift the data, W/S line should be low. Fredkin gate is used as the multiplexer to select whether to shift the data or to load a new data.

Fig. 13 Symbolic Representation of Proposed Reversible4-Bit Parallel In Serial Out Shift Register.

Table 8 shows t he n umber of reversible g ates required to implement the reversible 4-bit Parallel in Serial out shift register.

Table 8. Number of gates required to implement a 4-bit Reversible Parallel in Serial out Shift Register.

SI.No	Number Gates Required	of Number of garbage out puts produced
1.Proposed Work	15	11

9 Simulation Results

The en tire u nit w as f unctionally v erified. A testbench is used to generate the stimulus and applies it to the implemented reversible d-flip-flop, S erial in Serial out Shift Register, Serial in Parallel Out Shift Register, P arallel in S erial O ut S hift R egister an d Parallel in P arallel out S hift R egister. The d esign was si mulated u sing Mo delsim an d sy nthesized using X ilinx V irtex5 a nd t he pow er is e stimated using Xilinx Power Estimator tool.

Fig. 14 Simulation Result of the Proposed D-FlipFlop Using Reversible Gate AS.

In figure 14, clk, d represents the input signals and q , qba r represents the output signals. F rom the figure whenever clk makes a transition from logic 1 to logic 0 , whatever is the d value that is reflected in the output signal q .

Fig. 15 Simulation Result of the Proposed Reversible 4-Bit Serial In Serial Out Shift Register.

Figure 15 s hows t he s imulation r esult of the Reversible 4 -bit S erial in Serial out S hift R egister where $\mathrm{c} 1 \mathrm{lk}, \mathrm{dr}$ epresents t he input a nd q, qbar represents t he out put. From the figure, t he f irst input is available on the output signal q during the fourth clk transition from logic 1 to logic 0 .

Fig. 16 Simulation Result of the Proposed Reversible 4-Bit Serial In Parallel Out Shift Register.

Figure 16 s hows t he s imulation r esult of the Reversible 4-bit Serial in Parallel out Shift Register where c $\mathrm{lk}, \mathrm{d} \mathrm{r}$ epresents the i nput and $\mathrm{q}, \mathrm{qba} \mathrm{r}$ represents t he out put. From the figure, t he f irst input is available on the output signal q during the first clk transition from logic 1 to logic 0 . The 4 -bit input 0101 is a vailable on t he o utput du ring t he fourth clk transition from logic 1 to logic 0 .

Fig. 17 Simulation Result of the Proposed Reversible 4-Bit Parallel In Parallel Out Shift Register.

Figure 17 s howst he s imulation r esult of the Reversible 4 -bit P arallel in P arallel o ut S hift Register where $\mathrm{cl} \mathrm{k}, \mathrm{d}$ represents t he input a nd q , qbar represents the output. F rom the figure, the 4bit input 1010 is a vailable on the output during the first clk transition from logic 1 to logic 0 .

Fig. 18 Simulation Result of the Proposed Reversible 4-Bit Parallel In Serial Out Shift Register.

Figure 18 s hows t he s imulation r esult of the Reversible 4-bit Parallel in Serial out Shift Register where $\mathrm{c} \mathrm{lk}, \mathrm{dr}$ epresents t he input a nd q, qbar represents the output. From the figure, for the 4 -bit input 1010 the first bit is available on the o utput
signal during the fourth clk transition from logic 1 to 1 ogic 0 . In the realization of the p roposed shift register, the previous bit is loaded as the input to the next f lip-flop a nd h ence th ef irst bit is s hifted serially.

10 Conclusion

In this paper an optimized reversible d-latch and a d-flip-flop i s pr esented with t he pr oposed ne w Reversible G ate AS with lesser n umber of transistors. T he proposed D-flip-flop can g enerate both the outputs Q and Q '. Then a 4 -bit reversible serial in serial out, serial in parallel out, parallel in serial out and parallel in parallel out shift register is designed us ing the pr oposed r eversible d-flip-flop. The de sign is very us eful for the future computing techniques like ultra low power digital circuits and quantum c omputers. The pr oposed d-flip-flop is highly optimized in terms of number of transistors.

References:

[1]. R. Landauer, Irreversibility and heat generation in t he computing pr ocess, IBM J. Research and Development, Vol.5, No.3, 1961, pp.183-191.
[2].C. H . Bennett, Logical r eversibility o f computation, IBM J. Research and Development Vol.17, 1973, pp.525-532.
[3]. M. Perkowski, L. Joziwak, A. Mixhchenko, A. Al-rabadi, A. Coppola, A. Buller, X. Song, M. Khan S. Yanushkevich, V.P . Shmerko, M. Chrzanowska-Jeske, A general decomposition for reversible 1 ogic, Proceedings of the International Workshop on Methods and Representations (RM), 2001.
[4]. A. Peres, Reversible logic and quantum
Computers, Physical Review, Vol.32, 1985,
pp.3266-3276.
[5]. T. Toffoli, R eversible Computing. Tech memo MIT/LCS/TM-151, MIT Lab for Computer Science, 1980.
[6]. R. Feynman,. Quantum Mechanical Computers, Optics News, Vol.11, 1985, pp.11-20.
[7]. E. Fredkin, T. Toffoli, Conservative 1 ogic, International Journal of Theoretical Physics, Vol.21, 1982, pp. 219-253.
[8]. M. Haghparast, K. Navi, Design of a novel fault tolerant reversible full adder for nanotechnology based systems, World Applied Sciences Journal, Vol. 4, 2008, pp.114-118.
[9]. A. N. Na gamani, H. V . Jayashree, H. R . BhagyaLakshmi, Novel L ow P ower C omparator Design u sing R eversible Logic G ates, Indian

Journal of Computer Science and Engineering, Vol.2, No.4, 2011, pp. 576 - 574.
[10].D. Sengupta, M. Sultana, A. Chaudhuri, Realization of a Novel Reversible SCG Gate and its Application for D esigning P arallel Adder/Subtractor a nd M atch L ogic, International Journal of Computer Applications, Vol.31, No.9, 2011, pp. 30-35.
[11]. H. Thapliyal, M. B. Srinivas,M. Zwolinski, A beginningi $n t$ he reversible logics ynthesis of sequential circuits, Proceedings of the International Conference on the Military andAerospace Programmable Logic Devices 2005.
[12]. H. Thapliyal, M. B. Srinivas, An Extension to DNA B ased F redkin G ate C ircuits: D esign o f Reversible Sequential Circuits using Fredkin Gates, SPIE International Symposium on Optomechatronic Technologies Sapporo, Japan, December, 2005.
[13]. J. Rice, A new look at reversible memory elements, Proceedings of the International Symposium on Circuits and Systems 2006, pp. 243246.
[14]. H. Thapliyal, A. P . Vinod, D esign of reversible seq uential el ements w ith f easibility o f transistor implementation, Proceedings of the IEEE International Symposium on Circuits and Systems 2007, pp. 625-628.
[15]. H. Thapliyal, N. Ranganathan, Design of Reversible Sequential Circuits Optimizing Quantum Cost, Delay, and Garbage Outputs, ACM Journal of Emerging Technologies and Computer Systems, Vol.6, No.4, 2010, DOI 10.1145/1877745.1877748.
[16]. Md. Selim A 1 M amun, I. Mandal, Md. Hasanuzzaman, Efficient D esigno fR eversible Sequential C ircuit, IOSR Journal of Computer Engineering (IOSRJCE), Vol.5, No.6, 2012, pp. 4247.
[17]. S. Ranjith, T. Ravi, E. Logashanmugam, Design an $\mathrm{d} A$ nalysis of Parity P reserving F ault Tolerant Reversible Logic Shift Registers Using New 4*4 R R-Gate, International Journal of Advanced Research in Computer Science and Electronics Engineering (IJARCSEE), V ol.2, No.2, 2013, pp. 165-171.
[18]. Prashant R Y elekar, S ujata S C hiwande, Design of s equential circuit u sing reversible lo gic, IEEE Proceedings of the International Conference On Advances In Engineering, Science And Management (ICAESM -2012) 2012, pp. 321 - 326.

